
21st Century Medical Scheduling 
America COMPETES Contest 

Sample Test Script:  Scenario 001 
Description 

 
For the convenience of contestants, the configured testing framework provides an example of a 
fully implemented Use Case Scenario. This is Scenario 001 from the document of “Use Cases”. 
This document describes details of the script that implements this first scenario, with the goal of 
facilitating the work of contestants when setting up the tests for the subsequent seven Use Case 
scenarios. 
 

SETUP 
 
Please refer to the instructions in document TCMS – Instruction on Use of Testing Environment 
to set up and modify the testing environment. 
 

SCRIPT COMPONENTS 
 
The sample test script that implements the Use Case Scenario 001 consists of two major 
components: 
 

● Python Scripts and Sub-modules 
● Configuration files in JSON format 

 
They are described in detail below. 
 
The sub-module mechanism, used in the Python and JSON files, is convenient in that a 
submodule can be reused by calling it from the testing scripts implementing other use cases. 
 

Python script and sub-modules: 
 

● Scenario001.py.in: This is the driving script of testing Scenario 001. This script defines 
the overall workflow of multiple sub-tasks that the Use Case tests. The detailed 
implementation of individual tasks is located in sub-module Python files. 
 



● Sub-modules: These are reusable Python modules to fulfill a specific setup/action. The 
name of each sub-module script is self-explanatory, for example:  

○ AddDoctors.py.in is a Python sub-module that set up doctors in a VistA instance. 
○ AddClinics.py.in is a Python sub-module that set up clinics in a VistA instance. 
○ VerifyOneAppoinment.py is a sub-module that verifies the patient appointment 

information. 
 Currently, the testing infrastructure has about 20 sub-modules to implement actions 
required by Scenario 001 and others. 
 
Configuration files in JSON format: 
 
These files contain configuration data that is used by the Python sub-modules in order to set up 
the testing environment. For example, the exact list of holidays to be respected during the 
scheduling process. 
 

● Configuration file Scenario001.json: A custom test configuration of VistA based on 
scenario 001. This configuration file specifies the overall test configuration blocks; 
however, for each individual block, the details are stored in the specified sub-
configuration file, also in JSON format. 

● Individual sub-configuration files: specify detailed configuration information, for example: 
 ServiceSection.json will specify four types of service sections. 
 
In the CMake Process, as mentioned in the document TCMS – Instruction on Use of Testing 
Environment, both Python scripts and configuration files will be automatically configured based 
on input information that is specific to a given Virtual Machine, for example, the name of the 
states where they are hypothetically located (California, Georgia, Alabama). 

TESTING WORKFLOW IN DETAILS 
 
In this test scenario, the Python script reads the input based on the configuration file and 
performs the following actions in order: 
 

● Startup taskman. 
● Set up service section. 
● Set up appointment notification letters. 
● Set up holidays. 
● Create a system manager. 
● Add test patients. 
● Set up Institutions. 
● Set up divisions. 
● Add doctors. 
● Add clinics. 
● Assign notification letters. 
● Make an appointment for test patient.  
● Verify the appointment that just made. 



 
Please notice that the last two actions highlighted in bold are beyond the scope of scenario 001, 
but are provided for the contestant’s convenience as an example of how to verify actions for 
subsequent tests. 
 

Configuration File in Details: 
 
The detail of the Scenario001.json.in is as following: 
 
{ 
  "Institutions":"Institutions.json", 
  "Divisions":"Divisions.json", 
  "Doctors":{ 
    "Common Doctors":"CommonDoctors.json", 
    "Unique Doctors":"UniqueDoctors.json" 
  }, 
  "Clinics":"Clinics.json", 
  "Patients":{ 
    "Common Patients":"CommonPatients.json", 
    "Unique Patients":"UniquePatients.json" 
  }, 
  "Holidays":"Holidays.json", 
  "Notification Letters":"NotificationLetters.json", 
  "Service Sections":"ServiceSections.json" 
} 
 
As you probably noticed, the format is very easy to read (see more details at 
http://www.json.org/). The file above  specified 8 sections: Institutions, Divisions, Doctors, 
Clinics, Patients, Holidays, Notification Letter, and Service sections. The value of the each of 
the section is the name of the individual sub-configuration file. 
 
For instance, the institution configuration file “ServiceSections.json.in” looks like the following: 
 
{ 
  "Institutions":[ 
    { 
      "Name":"${VISTA_STATE} VA HEALTHCARE SYSTEM", 
      "Station Number":"401", 
      "Type Code":"MC", 
      "NPI":"4529860114", 
      "MultiDivision":"Y", 
      "Facility Type":"HCS", 
      "Street":"1 Main ST", 
      "City":"Anywhere", 
      "State":"${VISTA_STATE}", 
      "Zip Code":"14114" 
    }, 
    { 

http://www.json.org/


      "Name":"${VISTA_STATE} VA MEDICAL CENTER", 
      "Station Number":"401MC", 
      "Type Code":"MC", 
      "NPI":"8890253874", 
      "MultiDivision":"N", 
      "Facility Type":"VAMC", 
      "Street":"1 Main ST", 
      "City":"Anywhere", 
      "State":"${VISTA_STATE}", 
      "Zip Code":"14114" 
    }, 
} 
<SNIP> 
 
 
Notice that ${VISTA_STATE} symbol in the file above is a variable that is specified during the 
CMake configuration process, as described in detail in the document TCMS – Instruction on 
Use of Testing Environment. 
 
Contestants are encouraged to add more Python sub-modules, and expand the configuration 
file as needed. 


	SETUP
	SCRIPT COMPONENTS
	Python script and sub-modules:

	TESTING WORKFLOW IN DETAILS
	Configuration File in Details:

