
21st Century Medical Scheduling
America COMPETES Contest

Instructions on Use of Testing Environment

The Virtual Machines provided to contestants have installed a pre-configured environment for
the creation and execution of tests. The CMake (www.cmake.org) suite of tools is being utilized
for this contest. This environment is using two main tools: CMake and CTest.

● CMake: An open source cross-platform build system. CMake can generate build
components for a multitude of systems and build environments.

● CTest: An open source cross-platform test driver system. CTest integrates with the
CMake configured system and is able to perform the tests that have been written for the
system.

See http://www.cmake.org/cmake/help/v2.8.10/cmake.html for information on the CMake
commands.

Setup

The testing environment has already been configured in the three virtual machines that have
been supplied to you as a contestant. However, as you modify the existing tests or add new
tests you will have to rerun this configuration and generation process in order to get ready to run
your new or modified tests.

CMake uses a set of files called CMakeLists.txt to read commands and build the testing
environment. These files contain the full description of how to run each one of the tests. Once a
CMakeLists.txt file is modified, the testing configuration must be updated in order to take such
changes into account. This is done in two steps: (a) configure and (b) generate.

Configure Step

This step can be performed at any time, by entering the command

 $ cmake .

while in the Testing Binary directory (see Table 1 at the end of this document for the specific
location of the directories). CMake will then reconfigure and regenerate the files and tests for

http://www.cmake.org/cmake/help/v2.8.10/cmake.html

the Testing repository from the Testing source directory into the Testing binary directory (See
Table 1 for details on the directories locations).

Warning:

All changes to the files should be done in the source directory specified in Table 1.
Any changes made to the configured file located in the binary directory will be lost.

This command will need to be run at certain times such as when a change is made to a *.in file,
or a CMakeLists.txt file within the Testing source directory or when a new test file has been
added. CMake will replace any variables in the input file referenced as ${VAR} or @VAR@ with
their values as determined by CMake defined in CMakeLists.txt.

Run tests

Reproducibility Principle

Each one of the tests provided by the contestant must be reproducible and must be self-
sufficient.

To enable this behavior, the test that demonstrates each one of the Use Cases must also
provide a mechanism for restoring the VistA instance to the initial state as it was before the test.
Such restoration mechanism could be, for example, a set of scripts that will take a clean
database and configure it up to the point where the test can be run, or it could be a simple copy
of the database files into an alternative directory. Whatever the restoration process is, it must be
scripted in such a way that the evaluators can run it with a simple command. It is the contestant
responsibility to provide clear instructions on this restoration process.

During the evaluation process, evaluators will run the tests of the Use Cases multiple times and
in different orders. It is the contestant responsibility to ensure that the scripts it provides to run
the tests are suitable for supporting that evaluation process.

Running the Tests: Using CTest

The execution of the created tests is done using the CTest program. The tests are run from a
command prompt, such as any of the following options:

● The Terminal in Linux,
● The Git Bash Shell in Windows
● The Windows command prompt in Windows.

From any of these options, changing the directory (cd) to the Testing Binary Directory of your
test installation and typing “ctest” will run every test that has been created. Other ctest options
allow or disallow specific tests or groups of tests to be run.

CTest Basics

To see usage information for ctest along with the list of available options enter “ctest --help” or
visit http://www.cmake.org/cmake/help/v2.8.10/ctest.html :

$ ctest --help
ctest version 2.8.10.1
Usage

 ctest [options]

Options
 -C <cfg>, --build-config <cfg>
 = Choose configuration to test.
 -V,--verbose = Enable verbose output from tests.
 -VV,--extra-verbose = Enable more verbose output from tests.
 --debug = Displaying more verbose internals of CTest.
 --output-on-failure = Output anything outputted by the test program
 if the test should fail. This option can
 also be enabled by setting the environment
 variable CTEST_OUTPUT_ON_FAILURE
 -F = Enable failover.
<SNIP>

A very useful option is the ‘-N’, which will print out the names of the tests that would run, but not
actually perform the tests.

$ ctest -N
Test project /home/contestant/OSEHRA/Dashboards/OSEHRA-Automated-Testing-build
 Test #1: XINDEX_SAGG_Project
 Test #2: XINDEX_Run_Time_Library
 Test #3: XINDEX_Survey_Generator
 Test #4: XINDEX_Police_and_Security
 Test #5: XINDEX_Beneficiary_Travel
 Test #6: XINDEX_Visual_Impairment_Service_Team
 Test #7: XINDEX_NDBI
 Test #8: XINDEX_Dental
<SNIP>

To run only a subset of the tests or alter the output that is shown on the screen, you can use
one or more of those options to limit the tests. For example, the “-R” option allows you to specify
a regular expression for the names of tests to be executed:

http://www.cmake.org/cmake/help/v2.8.10/ctest.html

$ ctest -R XINDEX -V

That command will run the tests whose name matches the supplied regular expression ‘-R’, in
this case ‘XINDEX’, and with the ‘-V’ (verbose) option it will display more information on the
screen than usual.

CTest is used as the driver for all of the types of tests found with the testing suite. XINDEX,
MUnit, and the Scenario tests can all be run using the commands above.

Warning:
CTest is a powerful automatic testing fixture with the ability to interact through the web with
remote repositories and dashboards. For the purposes of this contest, your version of the
environment has these network capabilities removed to enhance confidentiality during the
contest. If you execute certain CTest commands such as those that use the ‘-D’ option, you
should expect error messages with respect to “git” and dashboard submissions. These network
error messages can be safely ignored. The actual results of your testing scripts should not be
affected.

The following are two examples of those error messages that you may see and you can safely
ignore:

 Update command failed: "/usr/bin/git" "fetch"
 Configure project

 Drop site:http://
 Submit failed, waiting 5 seconds...
 Retry submission: Attempt 1 of 3
 Submit failed, waiting 5 seconds...
 Retry submission: Attempt 2 of 3
 Submit failed, waiting 5 seconds...
 Retry submission: Attempt 3 of 3
 Error when uploading file:
/home/contestant/OSEHRA/Dashboards/OSEHRA-Automate
d-Testing-build/Testing/20121207-0400/Build.xml
 Error message was: Couldn't resolve host ''
 Problems when submitting via HTTP

Run Example Scenario

For the Test 1 phase, contestants are required to implement eight use case scenarios and to
provide automated tests for them. In order to provide guidance to contestants, the testing
environment provides an example of a full implementation of one of those use cases. Also, for
the convenience of the contestant, placeholders for the remaining seven use cases are provided
as well.

These files have already been added as tests to the CMake configuration. To execute the test
use CTest to call it by name (Scenario001) with the -R option, for example:

$ ctest -R CASE_Scenario001

Add new tests

Creating new tests is a vital part of making a safe piece of software. To add a new test to a
particular type in the current testing environment, follow these instructions.

As a suggestion, contestants could create local Git branches to host the modifications that they
make to the local Git repositories in the Virtual Machines. This is not a requirement, only a
suggestion for a potential workflow.

XINDEX:

● If a new package is to be added to the environment, add a new folder in the VISTA-FOIA
repository Packages directory (See Table 1 for details). The folder should have the
same name as the package it is testing and have the same internal structure as the
other folders. It should contain two folders: one labeled ‘Routines’ and one labeled
‘Globals’. This folder will be found automatically by CMake and the XINDEX test will be
created for it.

● If you are adding new routines to an existing package, place the routines into the

‘Routines’ folder within the VISTA_FOIA repository package folder (See Table 1 for
details) and CMake will automatically add the new routine to be checked in the XINDEX
test for that package.

MUnit:

● If the test to be added is in a new package or in a package that currently does not have
MUnit tests, add a folder in the UnitTest/VistA-FOIA/Packages directory within the
testing repository. The folder should have the same name as the package it is testing.
The test routine should be placed in that folder. The next time CMake is run, it will
create a test that will import that routine and run it as a test.

● If the test is being added to an existing package, place the test routine into the existing
UnitTest/VistA-FOIA/Packages/ folder. The next time CMake is run, it will be added to
the files imported by the test and will be run in the set of MUnit tests for that package.

Use Case Scenario:

● If the scenario that is to be tested falls in the 2 - 8 range, there is no work to be done
other than to write the script in the proper Python file. These files, which are found in the
UseCases/ directory, have already been linked to a test in the CMakeLists.txt.

In Linux
/home/contestant/OSEHRA/Dashboards/OSEHRA-Automated-Testing/UseCases/
Scenario001.py
Scenario002.py
Scenario003.py
Scenario004.py
Scenario005.py
Scenario006.py
Scenario007.py
Scenario008.py

In Windows
C:\Users\contestant\OSEHRA\Dashboards\OSEHRA-Automated-Testing\UseCases

If more scenarios are being added, the Python file should be placed in the UseCases/
directory and a new line be added to the end of the CMakeLists.txt that is in that
directory:

add_test(CASE_Scenario0## ${PYTHON_EXECUTABLE} “${CMAKE_CURRENT_BINARY_DIR}/Scenario0##.py”

● The ‘##’ symbol in the line above should be replaced by the number of the scenario
script.

If modifications, such as the above, are made to the testing infrastructure, contestants must
rerun CMake before attempting to run the tests that they have added or modified. This can be
done by typing:

$ cmake .

from within the Testing binary directory (See Table 1 for details).

General Test Additions:

● If adding a test that does not fall into one of the above categories, the test can be added
via the CMakeLists.txt in either the Testing Source directory or one of the subdirectories
using the command ‘add_test’:

 add_test(${TESTNAME} ${EXECUTABLE} [POSSIBLE ARGUMENTS])

See http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:add_test for more
information.

Table 1. Important Directories

Windows

Binary Directory:

C:\Users\contestant\OSEHRA\Dashboards\OSEHRA-Automated-Testing-build

Source Directory:

C:\Users\contestant\OSEHRA\Dashboards\OSEHRA-Automated-Testing

VistA-FOIA Directory:

C:\Users\contestant\OSEHRA\Dashboards\VistA-FOIA

Linux

Binary Directory:

/home/contestant/OSEHRA/Dashboards/OSEHRA-Automated-Testing-build

Source Directory:

/home/contestant/OSEHRA/Dashboards/OSEHRA-Automated-Testing

VistA-FOIA Directory:

/home/contestant/OSEHRA/Dashboards/VistA-FOIA

http://www.cmake.org/cmake/help/v2.8.10/cmake.html#command:add_test

CMake GUIs

In addition to the CMake command line tools (cmake, ctest), the CMake system also provides
Graphical User Interfaces (GUIs).

In Linux
In the Linux platform CMake offers a GUI interface based on the Curses library, called
“ccmake”. The following screenshot illustrates how this application would look when run from
the command line:

In Windows
In the Windows platform CMake offers the “cmake-gui” application. The following screenshot
illustrates how this application would look:

	Setup
	Configure Step

	Run tests
	Reproducibility Principle
	CTest Basics
	Run Example Scenario
	Add new tests
	Table 1. Important Directories
	Windows
	Linux

	CMake GUIs
	In Linux
	In Windows

